Journal of Organometallic Chemistry, 195 (1980) 249-252 © Elsevier Seguoia S.A., Lausanne – Printed in The Netherlands

DNMR SPECTROSCOPIC EVIDENCE FOR PHENYL GROUP EXCHANGE BETWEEN C₆H₅Hg⁺ AND Hg²⁺

PAUL PERINGER * and PETER-PAUL WINKLER

Institut für Anorg. u. Analyt. Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria) (Received March 20th, 1980)

Summary

.

The phenyl group transfer between $[Hg(DMSO)_6](O_3SCF_3)_2$ and $[C_6H_5Hg-$ (DMSO)₂](O₃SCF₃) has been investigated by means of ¹H, ¹³C and ¹⁹⁹Hg NMR spectroscopy. The bimolecular reaction is faster in methanol ($k_2 = 1.3 \times 10^4 \text{ l/}$ mol s) than in DMSO.

In view of recent reports [1] concerning solid stable organomercury(I) compounds, this study was initially directed towards the question whether or not soluble organomercury(I) compounds are formed as short-lived intermediates during reaction 1.

$$\mathrm{RHg}^{+} + (Hg - Hg)^{2+} \rightleftharpoons (\mathrm{RHg} - Hg)^{+} + Hg^{2+}$$
(1)

This would involve a net transfer of a mercury atom, as has been observed [2] for the exchange between valency states I and II of mercury (eq. 2):

$$Hg^{2+} + (Hg - Hg)^{2+} \Rightarrow (Hg - Hg)^{2+} + Hg^{2+}$$
 (2)

Phenylmercurytrifluoromethanesulfonate and mercury(I)trifluoromethanesulfonate in the form of its DMSO solvates were used in this experiment on the basis of solubility and stability considerations [3].

The addition of Hg_2^{2+} to a solution of $C_6H_5Hg^+$ caused noticeable broadening of the $C_6H_5Hg^{+199}Hg$ NMR signal. The Hg_2^{2+} signal on the other hand exhibited the same linewidth as observed in the absence of $C_6H_5Hg^+$. Although there was thus no ¹⁹⁹Hg NMR evidence for reaction 1, the result suggested the occurrence of a reaction between $C_6H_5Hg^+$ and Hg^{2+} species present in Hg_2^{2+} solutions as a result of the disproportionation 3.

$$Hg_2^{2+} \Rightarrow Hg^{2+} + Hg_{liquid}$$
(3)

Indeed, no ¹⁹⁹Hg NMR resonance could be detected in equimolar solutions of

 $C_6H_5Hg^+$ and Hg^{2+} . Reversibility was confirmed by the appearance of the signals of $C_6H_5Hg^+$ and Hg_2^{2+} after addition of liquid mercury, Hg^{2+} having been reduced to Hg_2^{2+} according to eq. 3. A transfer of the phenyl group between $C_6H_5Hg^+$ and Hg^{2+} thus seems to be indicated, eq. 4.

$$C_6H_5Hg^+ + Hg^{2+} \stackrel{\kappa_2}{\approx} Hg^{2+} + C_6H_5Hg^+$$
 (4)

This is corroborated by the disappearance of ${}^{1}H^{-199}Hg$ and ${}^{13}C^{-199}Hg$ coupling patterns of $C_6H_5Hg^+$ upon addition of Hg^{2+} , and by its reapparance at low temperatures. A concomittant broadening of the ${}^{13}C(1)$ resonance of $C_6H_5Hg^+$ was noted.

The dependence of the linewidth of the Hg^{2+} ($C_6H_5Hg^+$) ¹⁹⁹Hg NMR signal on the concentration of $C_6H_5Hg^+$ (Hg^{2+}) as shown in Fig. 1 or Fig. 2 is consistent with second order kinetics, yielding bimolecular rate constants $k_2 = 1.3 \times 10^4$ and $k_2 = 2.4 \times 10^3$ l/mol s respectively. The different rate constants may be explained by assuming as the first step of reaction 4 a dissociation of the stable [4] hexakis-DMSO-mercury(II) complex. The coordination of DMSO in the solvate [$C_6H_5Hg(DMSO)_2$] O_3SCF_3 is weaker than in [$Hg(DMSO)_6$](O_3SCF_3)₂ as a consequence of the *trans* influence of the C_6H_5 group, as can be seen from mercury—oxygen stretching vibrations in these compounds [3]. Thus, when an excess of $C_6H_5Hg^+$ (Fig. 2) is used, the DMSO present from dissociation of the weakly coordinated [$C_6H_5Hg(DMSO)_2$]⁺ diminishes the dissociation of [$Hg(DMSO)_6$]²⁺. This is supported by the observation of smaller k_2 (3.1 × 10² l/mol s) when DMSO as solvent in place of methanol.

No reactions of type 4 comparable in rate have been found for $C_6H_5HgCl/HgCl_2$ or $C_6H_5HgOAc/Hg(OAc)_2$.

Reaction 4 shows that the *trans* effect order does not parallel the *trans* influence order: The value of $J({}^{13}C(1)-{}^{199}Hg)$ in (see Experimental section), affected primarily by σ bonds, is the largest for all the C₆H₆HgX compounds examined so far [5]. The position of $X = CF_3SO_3$ in the *trans* effect order may be seen as a consequence of steric effects (the CF₃SO₃ anion is believed to be

Fig. 1. Plot of the linewidth of 0.5 M Hg(DMSO)₆(O₃SCF₃)₂ versus [C₆H₅Hg(DMSO)₂O₃SCF₃]in methanol.

Fig. 2. Plot of the linewidth of 0.5 M $C_6H_5Hg(DMSO)_2O_3SCF_3$ versus $[Hg(DMSO)_6(O_3SCF_3)_2]$ in methanol.

essentially noncoordinating in solution) or of electronic features of the transition state.

Reaction 4 would be the first example of kinetic lability on the NMR time scale of a Hg–C bond of aryl-mercury compounds. The existence of the same type (eq. 5) of redistribution reaction for allylmercury compounds can be concluded from the change of the σ allyl type PMR spectrum of CH₂ = CH–CH₂HgX into a AX₄ pattern upon addition of catalytic amounts of HgX₂ [6].

$$RHgX + HgX_2 \rightleftharpoons RHgX + HgX_2$$

Reactions involving a corresponding "one alkyl exchange" (eq. 5, R = Me, Bu) were investigated [7] by isotope labelling techniques. The increase in rate found when X was changed paralleled the increasing ionicity of HgX₂. An estimation of k_2 at 300 K for X = NO₃ and R = Me from data measured at 273 K [7], assuming similar temperature dependence of the rate as for X = Br [7], yields $k_2 = 7 \times 10^3$ l/mol s. A bimolecular electrophilic substitution at carbon with front side attack (S_E 2) was proposed for X with low affinity for Hg [7].

Complete self-symmetrization (eq. 6) has been reported for 2,3,5,6-tetrafluoro-4-methoxyphenylmercurytrifluoromethanesulfonate in acetone within

$$ArHgO_3SCF_3 \rightarrow Ar_2Hg + Hg(O_3SCF_3)_2$$

ten minutes [8]. No NMR signals of symmetrization products could be detected for phenylmercurytrifluoromethanesulfonate in acetone, although the absence of ^{13}C —¹⁹⁹Hg coupling indicates the presence of small amounts of Hg²⁺ according to reaction 4.

No DNMR spectroscopic evidence could be found for the occurrence of reaction 7.

$$C_6H_5Hg^+ + C_6H_5HgC_6H_5 \approx C_6H_5HgC_6H_5 + C_6H_5Hg^+$$
(7)

Reaction 8 seems unlikely in acetone because ¹³C—¹⁹⁹Hg spin—spin coupling has been observed in other solvents (see Experimental part).

$$C_6H_5Hg^+ + C_6H_5Hg^+ \approx C_6H_5Hg^+ + C_6H_5Hg^+$$
(8)

(5)

(6)

Experimental

¹H, ¹³C and ¹⁹⁹Hg NMR spectra were recorded on a Bruker WP-80 multinuclear spectrometer. $[C_6H_5Hg(DMSO)_2]O_3SCF_3$ and $[Hg(DMSO)_6](O_3SCF_3)_2$ were prepared as described elsewhere [3]. A solution of $Hg_2^{2^+}$ was obtained by treating $[Hg(DMSO)_6](O_3SCF_3)_2$ in methanol with elementary mercury [3]. Unless otherwise stated, the measurements were carried out in methanolic solution at 300 K. Only freshly prepared solutions of $C_6H_5Hg^+$ and Hg^{2^+} were used because slow oligomercuration is observed, especially at elevated temperatures.

^{13}C and ^{1}H NMR spectroscopic data for $C_6H_5HgO_3SCF_3$

1 *M* in DMSO: $\delta^{13}C(1)$ 143.6, $\delta^{13}C(2)$ 137.1, $\delta^{13}C(3) = \delta^{13}C(4)$ 128.8 ppm ¹*J*($^{13}C-^{199}$ Hg) 3110, ²*J*($^{13}C-^{199}$ Hg) 128, ³*J*($^{13}C-^{199}$ Hg) 248, ³*J*($^{1}H-^{199}$ Hg) 242, ⁴*J*($^{1}H-^{199}$ Hg) 69 Hz. 4 *M* in dioxane: $\delta^{13}C(1)$ 139.9, $\delta^{13}C(2)$ 137.0, $\delta^{13}C(3) = \delta^{13}C(4)$ 127.7 ppm ¹*J*($^{13}C-^{199}$ Hg) 2918, ²*J*($^{13}C-^{199}$ Hg) 134, ³*J*($^{13}C-^{199}$ Hg) 247 Hz.

Acknowledgements

We thank Professors A. Engelbrecht and K.E. Schwarzhans for making this work possible and the Fonds zur Förderung der Wissenschaft, Wien for allowing access to the NMR spectrometer.

References

- 1 E.T. Blues, D. Bryce-Smith and H. Karimpour, J. Chem. Soc. Chem. Commun., (1979) 1043.
- 2 P. Peringer, J. Chem. Research, in the press.
- 3 P. Peringer, J. Inorg. Nucl. Chem., in the press.
- 4 M. Sandstrom, I. Persson and S. Ahrland, Acta Chem. Scand. A, 32 (1978) 607.
- 5 P.L. Goggin, R.J. Goodfellow, D.M. McEwan, A.J. Griffiths and K. Kessler, J. Chem. Research (M), (1979) 2315; A.P. Tupiauskas, N.M. Sergeyev, Y.A. Ustynyuk and A.N. Kashin, J. Magn. Reson., 7 (1972) 124; N.K. Wilson, R.D. Sehr and P.D. Ellis, J. Magn. Reson., 21 (1976) 437; A.J. Brown, O.N. Howarth and P. Moore, J. Chem. Soc. Dalton Trans, (1976) 1584; J. Browning, P.L. Goggin, R.J. Goodfellow, N.W. Hurst, L.G. Mallinson and M. Murray, J. Chem. Soc. Dalton Trans., (1978) 872.
- 6 reviewed in V.S. Petrosyan and O.A. Reutov, J. Organometal. Chem., 76 (1974) 123.
- 7 E.D. Hughes, C.K. Ingold, F.G. Thorpe and H.C. Volger, J. Chem. Soc., (1961) 1133.
- 8 G.B. Deacon and D. Tunaley, J. Organometal. Chem., 156 (1978) 403.